On the Existence of Global Weak Solutions to 1D Pollutant Transport Model
نویسندگان
چکیده
منابع مشابه
Global existence of weak solutions to some micro - macro models
We prove global existence of weak solutions for the co-rotational FENE dumbbell model and the Doi model also called the Rod model. The proof is based on propagation of compactness, namely if we take a sequence of weak solutions which converges weakly and such that the initial data converges strongly then the weak limit is also a solution. To cite this article: A. Name1, A. Name2, C. R. Acad. Sc...
متن کاملGlobal Existence of Weak Solutions to the Fene Dumbbell Model of Polymeric Flows
Abstract Systems coupling fluids and polymers are of great interest in many branches of sciences. One of the most classical models to describe them is the FENE (Finite Extensible Nonlinear Elastic) dumbbell model. We prove global existence of weak solutions to the FENE dumbbell model of polymeric flows. The main difficulty is the passage to the limit in a nonlinear term that has no obvious comp...
متن کاملGlobal Existence of Weak Solutions for the Burgers-Hilbert Equation
This paper establishes the global existence of weak solutions to the Burgers-Hilbert equation, for general initial data in L(IR). For positive times, the solution lies in L2∩L∞. A partial uniqueness result is proved for spatially periodic solutions, as long as the total variation remains locally bounded.
متن کاملExistence of Global Weak Solutions to a Hybrid Vlasov-mhd Model for Magnetized Plasmas
We prove the global-in-time existence of large-data finite-energy weak solutions to an incompressible hybrid Vlasov-magnetohydrodynamic model in three space dimensions. The model couples three essential ingredients of magnetized plasmas: a transport equation for the probability density function, which models energetic rarefied particles of one species; the incompressible Navier–Stokes system fo...
متن کاملGlobal Existence of Classical Solutions to a Cancer Invasion Model
This paper deals with a chemotaxis-haptotaxis model of cancer invasion of tissue. The model consists of three reactiondiffusion-taxis partial differential equations describing interactions between cancer cells, matrix degrading enzymes, and the host tissue. The equation for cell density includes two bounded nonlinear density-dependent chemotactic and haptotactic sensitivity functions. In the ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2017
ISSN: 1916-9809,1916-9795
DOI: 10.5539/jmr.v9n4p124